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Periodic and Non-Periodic Componenぉ ln

Geomagnetic Secular Variation 

Kazuo YANAGIHARA 

Abstract 

Periodic component of geoma~etic secular variation is found when the non-
periodic change is reduced from observed values. Its period and amplitude are 
often determined wrongly by careless estimate of the non-periodic component， such 
as simple approximation by a power function of time. The method of least 
squares shou1d be applied to a sum of non-periodic and periodic terms. This is 
discussed in this paper. And then the analysis is made for 10 observatories' mean 
secular variation. Its period is about 60 y回路 withthe amplitude of 15-16γ/yr 
泊 flor /). 

1. In仕。duction

Instrumental routine ob民rvationof geomagnetic field has been carried out for 

several ten years at many stations over the world. Geomagnetic secular variation is 

generally slow and non-periodic for a short time， but a few research workers have 

noted a periodic variation of several ten years period superposed upon the general 

tendency of slow change111 (21. Dynamo-theoretical consideration also shows a possibi1ity 

of oscillation of the earth's quadrupole whose period is 77 ye訂 S(3).

Non-periodic component of the ob田rvedsecular variation might be a part of a 

periodic variation with a much longer period which cannot be identified from such a 

short duration of the observation. However it is convenient to divide the variation 

泊toperiodic and non-periodic components with respect to the duration of ob鈴 rva-
N 

tion-Non-periodic variation is expressed by a linear sum of tt，213tI4，whem r is 

time (expressed in unit of year in this paper) and N is generally not more than 2. 

For periodic component only periods more than a few ten years are considered in this 

paper. Variations with a shorter period， such as 11・year，may exist， but they are 

regarded as noi鵠 sin the pre舘 ntstudy. In order to study such rapid variations， 

general trend of slow variation must be reduced. Hence one of the main purpo鎚

of this paper is to get accurate secular variation which includes both of periodic and 

non-periodic terms. After the accurate secular variation is reduced from observed 

values of geomagnetic field， significant rapid changes may be found in the residual. 

This last point will be discussed in another paper. Another purpo路 isto get oscil-

lative mode of main geomagnetic field. 
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N 
Secular variation is approximately expressed by ~ stt1， for a short time. When 

extending this approximation to the whole period To of observation， such as several 

ten years， it is rather difficu1t to directly obtain the correct values of the coefficients 

s，'s which express the real non-periodic term， because of superposition of periodic 

variation with period T near to To. First step to get the non-periodic term may be 
N 

to calculate the Mst at cumofuttt for observed values during the period九

without regarding the periodic term. Thus obtained curve is clearly different from the 

real non-periodic component. This results in a different periodic term. lts period is 

significantly different from the real period T. It is approximately 3/4 of the ob鵠 rva-

tion period To， not depending upon the real period T (section 2). 

It might be essential1y difficult to identify a periodic term with a period which is 

near to the duration of observation. Nevertheless it is necessary to search for a better 

way to get more correct periodic term for the said study. 

2. Apparent period 

Apparent period which is usually舘 enin the secular variation is discus鵠 dfirst. 

Function y(t) of time t is a sum of non-periodic and periodic terms expres舘 dby， 

y(t) = so + slt + s2t2 + a sin(2πt /T) + b cos(2πt/T) . 、百，，，
a

・・・・，，‘、

Values of y(t) have been ob関rvedduring -To/2 ~ t ;孟To/2. The period T of the 

perioc;lic term is near to the observation period To. The function y(t) may be annual 

mean value of geomagnetic field (r) or its rate of change (r /yr)， or some other 

quantities. 

Supposing， 

Yl(t) = [so] + [st] t + [s2]t2 (2 ) 

for first approximation of y(t)， best fit coefficients [st] 's are calculated by the least 

square method as follows. 

L;y = N[so] + ~ [s占+~ [s2]t2 ) 

~Yt = ~[ß山 + ~[ßl]t2 + ~ [s山3 ト

L:yt2 = L:[sO]t2 + L:[sl]t3 + .L: [s2]t'. } 

N is the total number of observation. If the observation is evenly distributed 

throughout the duration To with 卸値cientlylarge N， summation ~ in the right-hand 

side of the equation (3) can be replaced by integral and the terms of t and t3 disap-

pear. Considering that errors and noises in ob鵠 rvedvalues of y(t)訂 eaveraged and 

disappear in L:y， ~yt and ~yt2， these summations are replaced by integral. Putting 

(1) into (3)， the differences between the real and estimated coe血.cients，

(3 ) 
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so一則=子(tfsin7-(引(:sin ; -cos ;)}b = b!o(p) 

1 P' P _.ππl  
sl -[st] =ーす:.~ :. sin .~ -cos て ~a = a!l(p)/To 

10πlπ P PJ 

s2一間=嘉ト3s寸+3(訂作sin7-∞s;)}b =妨 (p)川

are expressed by functions of p， which is 

P = T/To・

Residual part of y(t)， 

.dYl(t) = y(t) -YI(t) 
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(4) 

(5) 

(6) 

still includes non-periodic term with the coefficients given by the equation (4). It gives 

an apparent periodic variation with an apparent period much different from the real 

period T for -To/2 ~ t ;壬To/2. Examples are shown in Fig. 1， whose upper part 

shows two cases of y(t) with 

(叫ん=ん =b = 0， sl = -5.33/To， a = 1， T = (3/2)To ， 

(b) so =s2 =b =0， sI =ー3.60/To，a = 1， T = To・

Three straight lines of each y(t) express the rea) non-periodic term slt， tbe first 

approximation [sl]t and their average ([sl] + sl)t/2， respectively. Lower three curves 

in eacb column are residuals after subtracting the indicated non-periodic variation仕'om

y(t). Botb .dYl(t) shown in the top of tbem gives an apparent period very ne訂 to

(3/4)To， without distinction of tbe real period T， whicb is (3/2)To or To. Tbe lowest 

curve expresses the real periodic term， and the middle sbows again an apparent period 

moderately different from the real one. 

Residual curves， such as those shown in Fig. 1， include non-periodic term so that 

tbey are quasi-periodic in the given intemal To・ Determinationof their period is 

generally difficult， particularly in the actual case wbich includes noises in the observed 

value of y(t). Here apparent period Ta is defined as it is the interval between the 

points wbere the residual is zero (Fig. 1). Ta depends upon the determined coefficients 

of non-periodic term in y(t). For y(t) = slt + a sin(2trt/To)， change of Ta in tbe 

residual function .tJYI'(t) = -.tJslt + a sin(2πt/To) is shown in Fig. 2 with respect to 

e口or.dsl in determination of sl. Abscissa of the figure shows .dsl in unit of 

(st -[st]). Tbe origin of tbe abscissa represents .dsl = 0， hence Ta = To， and .dsl = 

-1.0(st -[st]) is the case of tbe said first approximation， .d仇(t)= y(t) -Yl(t). For 

.d sl > 0， the point of zero residual is not located within the interval -To/2孟t孟To/2，
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(a) T=(3/2)To (b) T=To 
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Fig. 1. Examples showing how the apparent period of 
residual function differs from the real period T depend-
ing upon the non-periodic term subtracted from the 
originaJ varia_tion _Y(D which is the sum of non-periodic 
term，β.t and periodic one， sin(2'7TI/T). 
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Fig. 2. Change of the apparent period T a which is due to the 
error .dsl in dermination of the coefficientβ1 for 

Y(/) =βlt+a sin(2'7Tt/To). 
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then Ta， is not determined. But extending the theoretical function outside the interval， 

Ta， is calculated and shown for reference. 

Broken line in the figure shows a more cor問ctperiod which is 0 btained in a 

reasonable way described in the next section. Tow lines near1y coincide with each 

other in the region of ds < O. Ta obtained in the said simple way gives nearly cor-

rect value of the period of the residual quasi-periodic variation， which is not the 

period T of the original vari~tion y(t). It nearly sticks in (3/4)To for the given 

examples of Ll宮市) who舘 original functions y(t) are anti-symmetric with respect 

to t = O. Reason why only anti-symmetric terms are considered will be described in 

the next section. 

Ta of the anti-symmetric term of dYl(t) is calculated from the interval between 

two t values which satisfy the equation， 

Ji(p)(t/To) + sin(2πt/pTo) =0， 

Periodic and Non-Periodic Components 

Therefore the original and it changes shightly with p( = T /To) as it is shown in Fig. 3. 

TaJ]。

1.0 

0.5 

-nu 

nu a
 

2.0 1.5 

Fig. 3. The apparent period T G of anti-symmetric term of 
LlYl(t). which varies with the period T in the original 
function y(t). 

1.0 

p (= T /To) 

0.5 

period T may be determined from T a. As T decrea槌 s，Ta approaches to T. For 

shorter T， period determination is easy. For longer T it is not so easy to distinguish 

slight change of Ta， particulary for T>  To・Thisdifficulty is shown in another 

example of Fig. 4， whose three curves are very similar in the intervalー To/2~ t ~ To/2. 

Each curve represents anti-symmetric function y(t) = slt + a sin(2irt/T) with different 

period T， T = (3/2)To， To or (3/4)To and with different .con血.cientssl and a which are 

cho鎚 nso as to give quite simi1ar curve in the interval -To/2孟t~ To/2. From 
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5 

y(t) 

。

-2 

-To/2 。 To/l 

Fig. 4. Very similar curves in the interval -T 0/2 ~ t話To/2.
Each curve represents y(t) =βlt+a Sin(21Tt/T)， with 

(1)向=ー10.20jTo，a=3.89， T=(3/2)To 
(2)β1=ー2.97/To， a= 1.55， T=To 
(3)β1=0， a=l， T=(3/4)To 

observed values in this interval， it may be very difficult to distinguish the difference 

between the curves， though their periods are different very much from each other. 

Even though the inevitable uncertainty is included， T -Ta curve is a simple but 

valuable way to estimate the real period T， compared with misunderstanding that an 

apparent period， such as Ta， is supposed to be the real period. 

3. Analysis of period 

Usual method of spectral analysis is not applicable to the variation observed 

within the limited interval To which is near to the period T concerned. In order to 

get the period of dYI(t)， the principle of the least square eπor is here used. The 

function dYI(t) is divided into two parts， anti-symmetric function dYla(t) and symmetric 

function dYIS(t)， 

dYla(t) = {dYl(t) -dYl( -t)}/2 1 

dYu(t) = {dYl(t) + dYl( -t)}/2 J 

for the sake of convenienω. 

(7) 

If original Y(t) is expressed by (1) without regarding noises or eπors in the 

observation， those divided parts of dYl(t) is given by， 
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iJyぱt)= a{ Ji(p)t/To + sin(2πt/pTo)} 1 
iJYI$(t) = b{ Io(p) + !2( p)(t/TO)2 + cos(2πt/pTo)}. ) 

(8 ) 

Only one parameter p is inc1uded in these expression except the amplitude a or b of 

the original periodic term. 

For anti-symmetric function iJYla(t)， amplitude at( Pt) of the spectral component 

at( PI) sin(2πt/PITo) is determined for a given period Tl， 

T1 =P1To， (9) 

so as to make integrated square error， 

;::; {iJYla(t) -at(pt) sin(2πt/ptTo))2dt 

minimum. Namely， 

rTo12 JI・
a1(P1)=l-TOAdU1a(t)sin(2πt/P270)dt/LTOJ2sid(2πt/pITo) dt. (10) 

Using the minimum integrated square error， spectrum Sla(PI) is defined here by， 

九 (ps)=1-jfC2idVEa(い I(PI)sin伽仙)}2dljZJ2{dU1川 d 、‘，
J

.•••. 
--a 
，，‘、

Simi1arly， amplitude bl(Pl) and spectrum SU(Pl) of symmetric function iJYts(t) are given 

by， 

b仇州仰抑1バω机(ω仇Pl)= ~仁仁にに!うごご乙;:C乙;;二:;ン〉2ノグd勾仰伽州ωU仇伽似附ts凶山s(心(οtのれ仰ω州)μ川州c∞ω州。凶州s咲ω(σ伽阿2勧π
and 

Sts(Pl) = 1ーに2iduaル

(12) 

(13) 

respectively. Putting (8) into (10)ー (13)，al(Pl)/a， bl(Pl)/b， Sla(PI) and Sts(Pl) are ex-

pressed by functions of Pl with a parameter P， 

仇 (pl)/a= 2{ Pl~町吋-会OS3)+手Fsh(7- 三)

一辻五叫7づ)}!(芸-sinZ) (14) 

b1(川=2[ { 2(0 (p) + ~.シβ叫吋一去シβ氏ωpω州)

+£玉fsベh峠(;一三)+辻fh(7+三)J/(ご+siE13) (15) 
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品川

(16) 

( b1{Pl) 12( "'_ ， _ _!_ 2π¥ IIA_UI_¥¥9. I 2 
SU(pl) = ~一一~} (2π + Pl sin :" )/同{!o(p)} 2 + : 'K!o{p).β(p) +石{β{p)}2l b J ，---. r-----Plll L '~-'''-'' . 3 ~-，..，r-.. ， 2U 

2~. .(2'K π(:π2 _ ¥ .π1 空 1
+8fo{p)p sinー+-:'9.!2{ p) ~ -:_. cosー+( ':2 -2 )sin ': ~ + 2π + psin -~- I 

瓦，，- .. -( p p ¥r I p ) P J 

(17) 

These are theoretical function when neglecting noises or eπors in y{t) ob田rva:tion目
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Figs. 5 and 6 show the theoretical curves calculated from (14)ー (17)for parameters 

p = 3/4， 1釦 d3/2. 
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The spectrum Sla(pl) or SU(pl) here defined may not give the real spectrum in 

usual meaning. But it gives the best fit periodic variation in the interval -To/2 

話f話To/2according to the definition. The spectral peak gives the best fit period of 

L1Yla(t) or LlYu{t) and the shape of the spectral curve shows something like spectral 

structure. The best fit period of LlYla(i) or .dYts(t) does not change so much evenぜ

the original period T( =pTo) changes very much， as it is seen in Fig. 5 or 6. It depends 

rather upon the observation period To. This is a ，quite similar result as that of 

apparent period Ta. 
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If some other functions are used for .dYla(t) or .dYts(t)， their spectrum can be 

calculated similarly. When the coefficient of an approximate function of the non-

periodic term is s' t for [ん](i= 0， 1 and 2)， /o(p)， /l(P) and β(p) should be replaced 

by (so-so')/b， (sI-sl')To/a and (s2-s2')To2/b， respectively， in (14)， (15)， (16) and (17). 

The best fit period of thus obtained spectral peak is a function of .dst = st' -st， 

which is the error in determination of non-periodical term of the original function 

y(t)， for a given parameter p( = T /To). An example of the period variation is shown 

in Fig. 2 (broken line) for .dy' la(t) = -.dslt + a sin(2πt/To). 

Using the theoretical spectrum Sla(pl) or S1S(pl)， best fit terms of observed Y(t) 

are obtained as follows. From ob鴎 rvedvalues of y(t)， [stJ's are calculated according 

to (3). Then ob民rved.dYla(t) and .dY1S(t) are obtained by using (2)， (6) and (7). 

Putting them into (10)ー(13)，observed spectrum Sla(pl) and SU(pl) are calculated. 

Comparing these observed spectrums with theoretical ones， such as tho民 givenin 

Fig. 5 and 6， best fit parameter p is determined. In this comparison both spectrums 

should be norma1ized because the peak of the observed spectrum may be lowered by 

noises in observed values. The determined p gives Jt(p)， which is put into (8). Then 

the least square method gives the best fit value of a or b from ob民 rvedvalues of 

.dYla(t) or .dYts(t) and calculated values of the right-hand side of (8). 

Choice of the best fit parameter p is not so easy， partiとularlyfor p > 1 (T> To)， 

becau鎚 thedi任:erencebetween spectral curves is not so much. This difficulty is 

unavoidable anyway as it is described in preceding sections. 

In actual application， use of anti-symmetric function is convenient to determine 

p unless the phase of the periodic variation is close to cosine term， because some 

parts of the cosine term are extracted away by the first approximation of so + [s21 t 2• 

Similar e首:ectof [sll t may be found in sine term too， but it must be smaller than 

that in cosine term. 

Actual examples of application are shown in section 5. 

4 Dired determination of periodic and non-periodic terms 

Analysis of period in the preceding民ctionhas started from .dYl(t) under the 

condition that the first approximation of non-periodic term was made before. And 

then the orig加a1terms in Y(t) is obtained from the spectrum of LlYl(t). Leading 

principle in the procedure is the least square e町or. If so， direct application of the 

same principle to the original y(t) may be simpler. 

Supposing， 

Y2(t) =ん(p2)+ sl(P2)t +ん(p2)t2+ a2(p2) sin(2πt/p2To) + b2(p2)COS(21rt/p2To)， (18) 
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for the best fit expression of observed y(t)， coefficients sO(P2)， sl(p2)， s2(P2)， a2(p2)， b2(p2) 

and P2 are determined so as to make the integrated square eπor， 

jwz 
-TO/2 {y(t) -Y2(t)}2 dt 

minimum， where 

P2 = T2/To. (19) 

When y(t) is exactly the same as given by (1)， sO(p2) =九 sl(P2)= sl， s2(P2) = s2' 

a2(p2) = a， b2(p2) = b and P2 = p(T2 = T). 

1 t is convenient to divide仇 (t)into symmetric and anti-symmetric terms becau鎚

of the same reason as is described for Yl(t) in the previous田ction. Here anti-sym-

metric function， 

Y2a(t) = sl(pか+a2(p2) sin(2πt/p2To) (20) 

is considered first. Corresponding observed value of anti-symmetric term is obtained 

from， 

Ya(t) = (y(t) -y( -t)} /2 . (21) 

From the ob田rvedvalues of y(t)， the best fit coefficients of the anti-symmetric 

term are calculated by， 

f'Tn/2 f'Tn/2 

N(p2) ¥ _ _ y(t) dt-L(p2) ¥ ~ _ y(t) sin(2πt/p2To)dt 
)-TO/2 J-TO/2 

ぬ(p2)= ーー 三一 ' {N(p2)} 2 - L(p2)M(p2) 

rTo/2 rTo/2 
N(p2) '-Tn/2 y(t) sin(2πゅの)dt-M(p2) ， -Tn/2Y(市d

ん(P2)=一__  J_一一一 一一一ー一一一一一 v
(N(p2)} 2 - L(p2)M(p2) 

for a given P2， where， 

f'To/2 
L(p2) =し。J2の

fTo/2 
M(P2)=1-ToJid(2πゅの)dt

MP2)=jb… 

(22) 

(23) 

U sing the minimum integrated square error of the anti-symmetric term for a given P2， 

に;iva(川知仰

spectrum S加 (P2)is similarly de:fined by， 
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I"Tn/2 I I"Tn/2 
S2a(P2) = 1 ーし。/Eiudo-V2a(f)}切 I~-TO/2 (ωv仇a(山刷(οωrの仰)

一L(ωP2)川(s1(ωP2心))2+Mてωp2){μa2(P2)川))2+2N(ωp2)沼sl(ωp2)a2(ωp2)

;コ;{Ya (t)} 2dt 
(24) 

Peak of the spectrum determines the best fit period P2， which then gives the best fit 

a2(p2) and sl(p2) by (22). 

For symmetric function， similar way must give so， s2 and P2 which is not neces-

sarily equal to the best fit P2 obtained from anti-symmetric function. However 

accuracy in determining the period may be lower in symmetric function than in anti-

symmetric one unless the phase of the periodic term is close to the cosine term， as it 

is described in the previous section. In actual application， P2， so the period， is 

determined from anti-symmetric term， and then symmetric term is calculated by the 

least square method using the determined P2・

All values of the coefficients are rigorously determined by this method in mathe-

matical meaning. However， reliability of the determined period， and then of all the 

determined values， is not so different from that in the method described in the 

preceding sections， because the spectrum S2a(p2) shows very broad peak as it is shown 

in the actual example of the next舘 ction(see Fig. 10). And each calculation in this 

method needs a lot of figures for each term to detect slight difference in spectral 

value and to treat unprocessed values of y(t). 

Table 1. List of observatories 

Geomagnetic 
SPuopYb田psleeeram vaaetzgotsraoy rr y Observatory 

Latitude ， L吋 tu仇 E
Period 

San Iuan 29.6 3.1 Vieques 1903-

Chambon-la-Foret 50.5 84.4 Val Ioyeux 1901-

Misallat 26.9 105.9 (Hksealwra an 1903-

Vysokaya Dubrava 48.5 140.7 Sverdlovsk 19倒ト

Yangi-Bazar 32.3 144.0 (「rDKbede1hra Dun 1903-

Patrony 40.7 174.7 1900-

Kakioka 26.0 206.0 (LZui-kkiabpWan ei 19∞-
Honolulu 21.1 266.5 1902-
Tucson 40.4 312.2 1910-
Fredericksburg 49.6 349.8 Cheltenhum 1901-
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5. Geomagnetic鴎 cularvariation in recent 65 years 

Geomagnetic鎚 cularvariations -are various in the world， but periodical terms are 

not so different from each other. Here their zonal terms are studied for examples of 

application of the method described above. Data are annual mean values川 .(~1 ， (6) of 

geomagnetic field from 1900 to 1965 at 10 observatories which are distributed rather 

evenly in the middle latitude zone from 200 to 500 in geomagnetic latitude. Those 

are San Juan， Chambon-Ia-Foret， Misallat， Vysokaya-Dubrava， Yangi-Bazar， Patrony， 

Kakioka， Honolulu， Tucson and FredericksburgぐTable1). The observatory names are 

tho田 in1965 and the preceding observatories are indicated in the table. 

20 

。
-20 

-40 

-60 

20 

。

-20 

。

19∞ 10 20 30 40 50 60 

Fig. 7. Ten observatories' mean of annual mean rate 
of change in three components of geomagnetic field， 
fI， Z and /). First approximations fIl and ZI of non-
periodic旬rmalso ar~ shoWn. for fI and Z. 
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Ten observatories' mean of annual mean rate of change in three components， 11， 

Z and 1J， are calculated (Fig. 7). For periods of no record in an observatory， data 

of a near-by ob民rvatory，which is indicated in Table 1， are supplementarily u田d. If 

this is impossible， simple interporation is carried out. For the first decade from 1900 

to 1910， as some observatories had not been operated yet， means for existing obser-

vatories' data are calculated. All the supplementary values are corrected to be connected 

smoothly to the values before and after the period concerned by using the difference 

obtained when the same procedure is extended before and after. 

As 11， Z and 1J of Fig. 7 are ten ob田rvatories'mean， they express the zonal part. 

Change of 1J is small. 11 or Z shows superposition of a periodical term upon a non-

TlYr 
30 

20 

10 

。

ー10

-20 

-30 

10 

。

寸O

ー~O

1900 10 20 30 40 50 60 

Fig. 8. Residual L1fll and its 'anti-syinmetric term L1fllo 
11-year running average also is s1iown for .dfllo. 
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periodical variation. H is considered first for y(t) in the preceding sections. First 

approximation of H， 

Hl = -17.04 + 1.011t + 0.01154t2 (25) 

is obtained from observed values shown in Fig. 7. Fig. 8 shows dHl = H-Hl and its 

antisymmetric term d H以t)= {dHl(t) -dHl( -t)} /2. Smooth curve of dHla is the 11・

year running average， which is calculated to determine the appa問 ntperiod T a because 

the ll-year variation exists clearly in H. The estimated T a is 48 years. From Fig. 3， 

T = 60 years (p = 0.92) is obtained for Ta/To = 48/65 = 0.74. Thus the period of the 

periodic term of H is approximately estimated at 60 years. 

The spectrum Sla(pl) of dHla is calculated by (10) and (11) substituting observed 

values of d H14 for dYla(t). Black dots of Fig. 9 show the calculated Sla(pl) which is 
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Fig. 9. Comparison between theoretical spectrum and 
observed one. Each spectrum is normalized as its 
maximum value is 1. 

normalized as its maximum is 1. Curves of the figure are theoretically expected 

spectrums which also are normalized from those in Fig. 5. All the dots are near to 

the theoretical spectrum of p = 1 (T=65)， but slightly shifted to p < 1. They are far 

from that of p=3/4 (T~50). Therefore best fit period T is estimated at about 60 

years which is the same as that estimated from the apparent period Ta• Uncertainty 

of 5 years or so is inevitable in such period determination. 

Substituting T=60 years (p=0.92) for period in (4)， 

ん-[st] =一0.0243a

is obtained. And then d Hla must be 



102 K. Yanagihara 

{ー0.02431+ sin(2Jt'1160)}a 

which gives 

a = 16.4， rlyr 

by the least square method from observed values of .dflla・ Thisa value and [sll = 

1.011 r lyr2 determine the value of sl， 

sl = [s.]ー0.0243a= 0.6・3rlyr2. 

Best fit period T can be determined also from symmetric term .dfllS and values 

of coefficient so， s2 and b may be obtained in similar way using this value of T， which 

may di首位 somehowfrom the above T value. However， the T value determined from 

.dflla is used here to determine these coefficients， because symmetric term is not 

suitable to deduce the period T as it is described in section 3. Thus determined 

values of the coefficients of symmetric term are， 

b = 9.56 rlyr 
so =ー23.65rlyr 

s2 = 0.03248 r lyr3 • 

All the coefficients give the best fit function of 10 observatories' mean s~:ular vl.riati:Hl. 

fI = -23.7 + 0.613/ + 0.0325t2 + 16.4 sin(2πtl60) + 9.6 cos(2rctI60)， rlyr， (26) 

where 1 is expressed in unit of year and 1 = 0 at 1932.5. 

Direct method described in section 4 may be better to determine the period. 

Substituting observed values of fI(t) for y(t) in (22)， a2(p2) and sl(p2) are calculated. 

Then the spectrum of anti-symmetric term， S2a(p2)， are obtained according to (24)， 
where 

fI a(t) = (fI(t) -fI( -t)} 12 

Saa(Pa) 
ufw 
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Pa (= T2/To) 

Fig. 10. Spectrum S2a(P2) of fI. 
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is used for Ya(I). Fig. . 10 shows the calculated S2a(p2) of 庁， which has a very broad 

peak. Its mathematical maximum is found at P2 = 0.92 which gives the best fi.t values， 

T = p2To = 60 ye訂 s

a = a2(p2) = 16.5 r/yr 

1'1 = sl(P2) = 0.612 r/yr2
• 

These values coincide with the above values determined by the other methods. 

Three methods of determing the period give the .sam~ result for if. Considering 

inevitable uncertainty in the determination， simpler way of T a is convenient. Only 

this method is app1ied for 2. First approximation of 2， 

21 = 14.32 + 0.02821 -0.03191/2 (27) 
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Fig. 11. Residual .dZl and its anti-symmetric term .dZ'R・
11・yearrunning average atso is shown for .dZIO 
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is obtained from observed va1ues shown in Fig. 7. Fig. 11 shows i1Z1 = Z -Zl and 

its anti-symmetric term dZ1a・ 1t-year running average of i1Z1a is shown too. Interval 

between 'zero-points of the t t-year running average gives Ta = 47.5 years， which is 

slightly smaller than that of i1111a・Thisgives T = 55 years. Considering that the 

difference in Ta is only 0.5 years between 11 and Z， that. old data of Z is not so 

reliable and that the period determination includes some uncertainty， the period in Z 

is supposed here to be the same踊 thatof 11; that is 60 years. Thus the best fit 

function of 10 observatories' mean secular variation for Z is expressed by， 

Z = 15.74 -0.3521 -0.0274/2 + 15.6 sin(2π1/60) -2.05 cos(2π1/60)， r/year. (28) 
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地磁気永年変化における周期項と非周期項

柳原一夫

概要

地磁気永年変化に周期数十年の周期的変化の合まれることは既に指摘されている。観測された永

年変化から非周期的変化を引き去れば，この周期的変化が明らかに認められるが，その周期、振幅

はしばしば誤まり定められやすい。それは真の非周期的変化を直接求め難いからである。観測値を

直接時間のニ次式〈あるL、は一次式〉で近似することを考え最小二乗法を適用したのでは，正い、

非周期項はえられない。 したがってこのときえられる非周期項を号1¥、た残りの周期的変化ももちろ

ん正しくなL、。これらのことはすべて観測期間と周期とが同程度であるためにおこる。
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正しくは，ニ来誤差を最小lこするとLづ原則を，周期項と非周期項の和とL、う関数について，限

定された期間の観測備に対して適用すべきである。この方法について考究し，現実の永年変化を解

析した。中緯度に均等に分布する10カ所の観測所の平均永年変化から水平分力と垂直分力の年変化

率の周期項として，周期60年，援幅 15........16γ/yrがえられた。


